S9624:

Performance Analysis of
GPU-Accelerated Applications
using the Roofline Model

GTC 2019, San Jose

Charlene Yang
Application Performance Specialist
NERSC, LBNL
cjyang@Ibl.gov

Office of

? ENERGY Science

Samuel Williams

Senior Staff Scientist
CRD, LBNL
swwilliams@Ilbl.gov

m

You just bought a $10,000
throughput-optimized GPU!

Are you making good use of
your investment?

Science

You could just run benchmarks

» |[magine a mix of benchmarks or t
kernels...

» GFLOP/s alone may not be
particularly insightful

= Moreover, speedup relative to a
Xeon may seem random

GFLOP/s

Kernel (or apps)

CERY, U.S. DEPARTMENT OF Office of

x) ENERGY Science ’

Making good use of your GPU? ‘

1. Are you operating it in the throughput-limited regime??
Not sensitive to Amdahl effects

Not sensitive to D2H/H2D transfers

Not sensitive to launch overheads

Not sensitive to latencies

O O O O

2. If in the throughput-limited regime, are you making good use of the
GPU’s compute and bandwidth capabilities?

Office of
Science 3

The Roofline Model

00O < (im] w =0 @ crd.Ibl.gov (@] il O +

F71, U.3. DEPARTMENT OF

.,
e COMPUTATIONAL RESEARCH \QENERGY

= Roofline Model is a throughput- i
oriented pe rformance model e ey o T e
Performance and Algorithms Research

* Premised on the interplay between EENN - inc Performance Model

ALGORITHMS

RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on

|]
Research y or p i Rather than simply using percent-of-peak estimates, the model can be used to
Auto-tuning assess the quality of attained performance by combining locality, idth, and different izati I into a single
, , U performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance

SEARCH

Home » Performance and Algorithms Research » Research » Roofline

BeBOP limitations.
EDGAR
GRS Arithmetic Intensity
n HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to

. Roofline total data movement (bytes). A BLAS-1 vector-vector increment (x[i[+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SciDAC /24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
Previous Projects would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would

limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

* |Independent of ISA and architecture 0

qQ
S

r N7 N T \

Google+
SpMV

applies to CPUs, GPUs, Google g
TPUs, etc... = R

Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing
Unit”, ISCA, 2017.

>

U.S. DEPARTMENT OF Offlce Of r/r-\rl II\I
ENERGY oneeo 4 e

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

= One could hope to always attain
peak performance (GFLOP/s)

= However, finite locality (reuse)
and bandwidth limit performance.

= Assume:

o ldealized processor/caches
o Cold start (data in DRAM)

Time = max<

Office of
Science

"#FLOPs | Peak GFLOP/s
_#Bytes / Peak GB/s

GPU

(compute, GFLOP/s)

DRAM Bandwidth
(GB/s)

DRAM

(data, GB)

(DRAM) Roofline

= One could hope to always attain
peak performance (GFLOP/s)

= However, finite locality (reuse)

and bandwidth limit performance.

= Assume:
o ldealized processor/caches
o Cold start (data in DRAM)

"Peak GFLOP/s
_Al * Peak GB/s

Note, Arithmetic Intensity (Al) = FLOPs / Bytes (as presented to DRAM)

Office of
Science

GFLOP/s = min<

GPU

(compute, GFLOP/s)

DRAM Bandwidth
(GB/s)

DRAM

(data, GB)

Arithmetic Intensity :

= Arithmetic Intensity is the most important concept in Roofline.

= Measure of data locality (data reuse)
= Ratio of Total FLOPs performed to Total Bytes moved

= For the DRAM Roofline...

o Total Bytes to/from DRAM and includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested) due to cache reuse

Office of
Science

(DRAM) Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

» Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, efc...

= Kernels with Al less than

machine balance are ultimately
DRAM bound (we’ll refine this
later...)

Office of
Science

Peak GFLOP/s

Attainable GFLOP/s

DRAM-bound; Compute-bound
—>

. >
Arithmetic Intensity (FLOP:Byte)

Transition @ Al ==
Peak Gflop/s / Peak GB/s ==
‘Machine Balance’

Example :

= Consider 3 kernels (A,B,C) t

o calculate or measure the Arithmetic

Intensity for each eak GFLOP/s

o Determine the Roofline intercept for
each kernel

» kernels A and B are bound by
memory bandwidth

» kernel C is bound by peak FLOP/s

Attainable GFLOP/s

>

Office of

£Z W, U-S. DEPARTMENT OF

I oA)2

2\)/ :

ENERGI Science 9

Scaling to Future GPUs :

= |[magine you run on a future GPU 1
with twice the peak FLOPs...

> kernel C’s performance could double

x GFLOP/s

X kernels A and B will be no faster

Attainable GFLOP/s

Office of

/@11\ U.S. DEPARTMENT OF
@ENERGY s
Science 10

Scaling to Future GPUs

= What if that future GPU also
doubled its memory bandwidth...

> kernel A and B’s performance could
also double

Office of
Science 1"

Attainable GFLOP/s

x GFLOP/s

Arithmetic IntenS|ty (FLOP:Byte)

Why is Roofline Useful?

= Think back to our mix of loop 1
nests where GFLOP/s alone
wasn’t useful...

GFLOP/s

Kernel (or apps)

ZZ U.S. DEPARTMENT OF Office of
®

ENERGY Science 12

Why is Roofline Useful?

= We can sort kernels by Al ...)
2
o
O
-l
L
O
Arithmetic Intensity (FLOP:Byte)
PR ,:‘7 EEEEEEEEEEEEEE Offi f
© ENERGY scene 13

Why is Roofline Useful? ‘

= We can sort kernels by Al ...)

= ... and compare performance p——
relative to machine capabillities

GFLOP/s

>

Office of
Science 14

Why is Roofline Useful? :

= Kernels near the roofline are 1
making good use of
computational resources...

» kernels can have low performance
(GFLOPI/s), but make good use of a
machine

GFLOP/s

» kernels can have high performance
(GFLOPI/s), but make poor use of a
machine

>

Office of

£Z W, U-S. DEPARTMENT OF
ENERG I Science S

Can Performance Be Below Roofline? \

= Analogous to asking whether
one can always attain either...

O

O

Peak Bandwidth
Peak GFLOP/s

= Sure, there can be other
performance bottlenecks...

O

O
O
O
O

Cache bandwidth / locality

Lack of FMA / tensor instructions
Thread divergence / predication
Too many non-FP instructions

Office of
Science 16

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Cache Effects...

= Hierarchical Roofline Model

= Construct superposition of

Rooflines...

o Measure Al and bandwidth for each
level of memory/cache

o Loop nests will have multiple Al's and
multiple performance bounds...

o ... but performance is ultimately the
minimum of these bounds.

Office of

/@ U.S. DEPARTMENT OF
1)2
ENERG I Science

Attainable GFLOP/s

Peak GFLOP/s

L2 Bound
L2 AI*BW
is less than

Cache Effects...

= Hierarchical Roofline Model

= Construct superposition of

Rooflines...

o Measure Al and bandwidth for each
level of memory/cache

o Loop nests will have multiple Al's and
multiple performance bounds...

o ... but performance is ultimately the
minimum of these bounds.

= Extend to other memories...

o L1/ Shared
o System

Office of
Science

18

Attainable GFLOP/s

Peak GFLOP/s

Insights — Exploiting Caches :

= Widely separated Arithmetic t
Intensities indicate high reuse Iin

Peak GFLOP/s
the cache

Attainable GFLOP/s

Office of
Science 19

Insights — Exploiting Caches ‘

= Widely separated Arithmetic t
Intensities indicate high reuse Iin
the Cache v Peak GFLOP/s
» Similar Arithmetic Intensities .
. . . O
indicate effectively no cache o
reuse (== streaming) £ ;
Z !
= As one changes problem size, nojreuse
|2 and DRAM arithmetic .
intenSitieS can behave Very Arithmetic Intensity (FLOP:Byte)
differently

Office of
Science 20

Failure to Exploit CISC Instructions ‘

» Death of Moore’s Law is motivating a return of Complex Instruction
Set Computing (CISC)

» Modern CPUs and GPUs are increasingly reliant on special (fused)
instructions that perform multiple operations.

o FMA (Fused Multiply Add): Z=a"x+y ...Z,X,y are vectors or scalars
o 4FMA (quad FMA): Z=A*x+z ...AIs a FP32 matrix; x,z are vectors
o HMMA (Tensor Core): Z=AB+C ...L,A,B,C are FP16 matrices

O

» Performance is now a weighted average of Mul/Add, FMA, and
HMMA operations.

Office of
Science

21

Failure to Exploit CISC Instructions :

>

= Total lack of FMA reduces Volta

performance by 2x...
o creates ADD.f64 ceiling

. . .] ADD.f64 Ceiling
= In reality, applications are a mix

of FMA.f64, ADD.f64, and
MUL.f64...

o Performance is a weighted average

» Produces a partial FMA ceiling that
bounds kernel performance

Attainable GFLOP/s

s Qprreeeees Partial FMA

>

Arithmetic Intensity (FLOP:Byte)

Office of
Science

22

Failure to Exploit CISC Instructions :

> A few non-HMMA operations can
quickly limit Tensor core
performance Arithmetic Intensity (FLOP:Byte)

= On Volta, Tensor cores provide)
125 TFLOPs of FP16
performance (vs. 15 for FP32) v
O
= However, kernels/apps will mix ’ $\ca‘z’\%. Q-rreen. PRl HMMA
HMMA with FMA, MULSs, 2 & A
ADDs, § ADD.f32 Ceiling

>

Office of
Science 23

sing Roofline To Drive Optimization

~

. DEPARTMENT OF Office of rr/r—r>| ,ﬁI
NERGY Science BERKELEY LAB

Driving Performance Optimization :

= Broadly speaking, there are t
three approaches to improving e GrLOple
performance:
T
@)
T
O
>

Arithmetic Intensity (FLOP:Byte)

Office of
Science 25

Driving Performance Optimization :

= Broadly speaking, there are
three approaches to improving
performance:

= Maximize SM performance
(e.g. minimize predication)

Office of
Science

26

GFLOP/s

Peak GFLOP/s

>

Arithmetic Intensity (FLOP:Byte)

Driving Performance Optimization :

= Broadly speaking, there are
three approaches to improving
performance:

= Maximize SM performance (e.g.

minimize predication)
= Maximize memory bandwidth

(e.g. avoid pathological
memory access patterns)

Office of
Science

27

GFLOP/s

Peak GFLOP/s

>

Driving Performance Optimization ‘

Broadly speaking, there are
three approaches to improving
performance:

Maximize SM performance (e.qg.
minimize predication)
Maximize memory bandwidth

(e.g. avoid pathological memory
access patterns)

Minimize data movement
(i.e. exploit reuse)

Office of
Science

28

GFLOP/s

Peak GFLOP/s

Compulsory Al

Current Al

>

Arithmetic Intensity (FLOP:Byte)

~

. DEPARTMENT OF Office of rr/r—r>| ,ﬁI
NERGY Science BERKELEY LAB

DRAM vs L1 Arithmetic Intensity

= Consider a 7-point constant GPU

coefficient stencill...

o 7 FLOPs
o 8 memory references (7 reads, 1 store) per point
o Al=0.11 FLOPs per byte (L1)

compute, GFLOP/s)

#pragma omp parallel for
for(k=1; k<dim+1;k++){ .
for(j=l;j<d1’m+1;j++){ DRAM Bandwidth

for(i=1;i<dim+1l;i++){ (GB/s)
new[k][j][i1] = -6.0%old[k 1[3 1[i 1]
+oldlk 1[3 1[i-1]

Ntk 16 i) DRAM
old[k J[j-11[1]
old[k J[j+1][i (data, GB)
old[k-11[3 1[4
old[k+1]1[3 1[4

AE B, U.S. DEPARTMENT OF Office of

~
£ . . - /\
© ENERGY oo ”
O Science BERKELEY LAB
s

DRAM vs L1 Arithmetic Intensity

= Consider a 7-point constant GPU
coefficient stencil... (compute, GFLOP/s)
o [FLOPs Cache Bandwidth
o 8 memory references (7 reads, 1 store) per point ‘ (GB/s)
o Cache can filter all but 1 read and 1 write per point |dea| CaChe

o Al=0.44 FLOPs per byte

#pragma omp parallel for
for(k=1; k<dim+1;k++){

(only compulsory misses)

DRAM Bandwidth

for(J =1l J<dTT-f-1,]++){ (GBYs)
103 10]
10 3t DRAM
% H;H E] (data, GB)

1
! 01d[k+ijE3 jf{ j

CERY, U.S. DEPARTMENT OF OffICe Of

>
5 — A
& ENERGY 2 .o]
N Science BERKELEY LAB
pRgRAr L

DRAM vs L1 Arithmetic Intensity

ENTOp
_vf ~&Y
= P
% =
) &
2 <>
S Dy O

= Consider a 7-point constant

coefficient stencill...

o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point
o Cache can filter all but 1 read and 1 write per point
o Al=0.44 FLOPs per byte == memory bound

#pragma omp parallel for
for(k=1; k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1l;i<dim+1l;i++){
new[k][j]1[i] = -6.0%old[k 1[3 1[i]
+ old[k 1[3 1[1-1]

old[k 1[3 1[i+1]
old[k 1[j-11[1]
old[k J[j+1][1]
old[k-11[7 1[1]
old[k+1][j 1[i 1;

U.S. DEPARTMENT OF Office of

ENERGY Science

Peak GFLOP/s

* DRAM GB/s

Attainable GFLOP/s

32

<
) — A
% U.S. DEPARTMENT OF Office of rr/r—r>| '"|

& ENERGY science

General Roofline Data Collection ‘

Most kernels are more complicated than the 7-point stencil...

Office of
Science 34

General Roofline Data Collection \

Most kernels are more complicated than the 7-point stencil...

How do we measure the total number of FLOPSs?
How do we measure the total number of bytes moved (read/write, L1/L.2/HBM)?
How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the
architecture?

Office of
Science 35

General Roofline Data Collection ‘

Most kernels are more complicated than the 7-point stencil...

How do we measure the total number of FLOPSs?
How do we measure the total number of bytes moved (read/write, L1/L.2/HBM)?
How do we measure the runtime for each kernel?

How do we know the peak bandwidth (L1/L2/HBM) and the peak FLOP/s for the
architecture?

Office of
Science 36

Step 1. Collect Roofline Ceilings ‘

» Empirical Roofline Toolkit (ERT)
- Different than the architecture specs, MORE REALISTIC

- Reflects actual execution environment (power constraints, etc)

- Sweeps through a range of conflguratlons and statlstlcally stable

- Data elements per thread
o FLOPs per data element
o Threadblocks/threads

o Tlrails per dataset

o elc

Total Bandwidth (GB/s)

0000000 | L Lo il i Lo dual L Lo il i Lol L
1e+04 1e+05 1e+06 1e+07 1e+08
Working Set Size (bytes)

gg':ﬁc‘: Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

ERT Configuration

Kernel.c
* actual compute
e customizable

Driver.c

¢ setup

« call kernels

* |oop over parameters

config script
* set up ranges of parameters

job script
e submit the job and run it

Office of

/@ U.S. DEPARTMENT OF
1)2
ENERG I Science

38

ERT Output

roofline.json roofline.ps

RS T T T T T T LI B B |

"gbytes": {
"data": [10000 =

[

|IL1|I ,
2996.82
],

[llDRAMH 1000 :

828.83

GFLOPs / sec

"gflops": { 100 £
"data": [
[

"GFLOPs",
7068.90

M R SR R S SR R S
10 100

10 ——
0.01 0.1 1

FLOPs / Byte

>

g A
e als

f“"“"e«% U.S. DEPARTMENT OF Office of
Y 39 BERKELEY LAB

EN ERGY Science

ERT Output

roofline.json roofline.ps
"gbytes": {
"data": [10000 =
[
n L 1 n ,
2996.82
"DRAM", o 1000
828.83 @
a
O
™
O]
"gflops": { 100 £
"data": |
[
"GFLOPs",
7068.90
ol
0.01 0.1 1 10 100
FLOPs / Byte

>

;:e«% U.S. DEPARTMENT OF Office of NVI D IA V1 OO - VOltar at Uoregon ;E:I:ELlAlL

EN ERGY Science

ERT Output

roofline.json

"gbytes": {
"data": [

[
llLllI,
2996.82

lIDRAMH ,

"gflops": {
"data": |
[

"GFLOPs",
7068.90

™ U.S. DEPARTMENT OF Office of

R
i ENERGY science

GFLOPs / sec

roofline.ps

N S S R A A |

10 | R T S N A A
0.01 0.1 1
FLOPs / Byte

NVIDIA V100 -- Voltar at UOregon

10 100

>
g A
rrrrrrr |'"|

BERKELEY LAB

Discrepancy Empirical vs. Theoretical &

= Theoretical FP64 compute ceilings on V100:
- FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s

- no FMA: 80 SMs x 32 FP64 cores x 1.53 GHz = 3.92 TFLOP/s
= Theoretical memory bandwidths on V100:

- HBM: 900 GB/s 4
104 .
| Y > S et eernr e e enaernrenaann Theoretical FMA; 7833.6 GELOP/s.| | 1009
- | 2: ~4.1 TB/s T Empirical FMA: 7068.9 GFLOP/S | 0%
..................................... Theoretical No-FMA: 3916.8 GFLOP/s.
- L1: ~14 TB/s Empirical No-FMA: 3535.8 GrLopss| | 10%

= You may never achieve 7.8 TFLOP/s

103 &

Performance [GFLOP/sec]

= You may be closer to the ceiling
than you think you are

10° 10! 102 103 104 0

2R U.S. DEPARTMENT OF | Office of Arithmetic Intensity [FLOPs/Byte]

ENERGY science 42 Voltar at UOregon

5
>
A
rrrrrr |"'|

Performance [GFLOP/sec]

104j

FMA: 7068.9 GFLOP/s

No-

FMA: 3535.8 GFLOP/s

103j

109 1
Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

ENERGY Science

102

43

>
A
rrrrrrr |"'|

Performance [GFLOP/sec]

104j

FMA: 7068.9 GFLOP/s

No-FMA: 3535.8 GFLOP/s

103j

Where to put these dots?

Il L1
e L2
s HBM ® Kernel

U.S. DEPARTMENT OF

109 T T
Arithmetic Intensity [FLOPs/Byte]

Office of

ENERGY Science

A4

>
A
rrrrrrr |"'|

Step 2. Collect Application Performance m

Require three raw measurements:

1004 1% & — Runtime

’gj@o FMA: 7068.9 GFLOP/s — FLOPs
[/ / / — Bytes (on each cache level)
S | No-FMA: 3535.8 GFLOP/s
2 to calculate Al and GFLOP/s:
N
£ Where to put these dots? : : o nvprof FLOPs
2 Arithmetic Intensity = Data M

_ - (FLOPs/Byte) nvprof Data Movement

=T =E nvprof FLOPs
1 Arithmetic Intensity [FL01132/IByte] 1 Performance = Runtime
(GFLOPI/s)

/ﬁg‘r"ff\if\,::: U.S. DEPARTMENT OF OffICe Of

¢ = A
/\I i
L 04 ENERGY science 45 i

Collect Application Performance ‘

* Runtime:
- Time per invocation of a kernel
nvprof --print-gpu-trace ./application
- Average time over multiple invocations
nvprof --print-gpu-summary ./application

- Same kernel with different input parameters are grouped separately

* FLOPs:
- Predication aware and complex-operation aware (such as divides)
- nvprof --kernels ‘kernel name’ --metrics ‘flop count xx’
./application

- e.g. flop count {dp/dp add/dp mul/dp fma, sp*, hp*}

Office of

/@11\ U.S. DEPARTMENT OF
@ENERGY s
Science 46

Collect Application Performance :

» Bytes for different cache levels in order to construct hierarchical Roofline:

- Bytes = (read transactions + write transactions) x transaction size
- nvprof --kernels ‘kernel name’ --metrics ‘metric name’

./application

Transaction
Size

Level Metrics

gld transactions, gst transactions, atomic transactions,
First Level Cache* |local load transactions, local store transactions, 32B
shared load transactions, shared store transactions

Second Level Cache |12 _read transactions, 12 write transactions 32B
Device Memory dram read transactions, dram write transactions 32B
System Memory system read transactions, system write transactions 328

= Note: surface and texture transactions are ignored here for simplicity (HPC applications)

ZEWY, U-S. DEPARTMENT OF Office of

~ A
‘ ENERGY science 47 r:'>| I

Example Output

[cjyang@voltar source]$ nvprof‘——kernels "l:7:smooth kernel:1" |--metrics
flop count dp --metrics gld transactipns --metrics gst transactions --
metrics 12 read transactions --metrics\ 12 write transactions --metrics
dram read transactions --metrics dram write transactions --metrics
sysmem read bytes --metrics sysmem write bytes ./hpgmg-fv-fp 5 8

= Export to CSV: --csv -o nvprof.out context : stream : kernel : invocation

Invocations Metric Name Metric Description
Device "Tesla W1Ge-PCIE-16GE (@)"

Kernel: woid smooth_kernel<int=g, int=32, int=4, int=8:{level type, int, int, double, double, 1int,
Tlop cCount dp Floating Foint Opetr ﬂf'll_l_l_l'[“llltl'—‘ Frcu_1_1||r||
1 tran “‘Twn— Global Load
T Tr—m“‘ﬁllrl— Global Store

L2 Read

L2 Write

Device Memory Read

Device Memory Write

Sstem ermlr
'-1"—'I'II Memoy

¢I I
M
—+
J—
Iy

T1||r|—

Ql ol
M

T
1M

== = e e

. 1 1 1
~ O wmowmom I|| I||

é,isrr* 5 . - /\
‘ ‘%‘: U.S. DEPARTMENT OF Office of 48 ':”}l o
\ X % EN ERGY Science BERKELEY LAB

Step 3. Plot Roofline with Python *

= (Calculate Arithmetic Intensity and GFLOP/s performance
- X coordinate: Arithmetic Intensity
-y coordinate: GFLOP/s performance

nvprof FLOPs nvprof FLOPs

Performance = Sy , Arithmetic Intensity = DM
(GFLOP/s) untime (FLOPs/Byte) nvprof Data Movement

* Plot Roofline with Python Matplotlib
- Example scripts:
- https://qgithub.com/cyanguwa/nersc-roofline/tree/master/Plotting
- Tweak as needed for more complex Rooflines

Office of
Science 49

https://github.com/cyanguwa/nersc-roofline/tree/master/Plotting

Plot Roofline with Python

= Quick example: plot roofline.py data.txt

= Accepts space-delimited list for values
= Use quotes to separate names/labels

data. txt V100
104f

FMA: 7068.9 GFLOP/s_|

/ / No-FMA: 3535.8 GFLOP/s

all data is space delimited
memroofs 14336.0 2996.8 828.758
mem roof names ‘L1’ ‘L2’ ‘HBM'’
comproofs 7068.86 3535.79

comp roof names ‘FMA’ ‘No-FMA'’

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58 10%1
GFLOPs 2085.756683 '
labels ‘Kernel’

Performance [GFLOP/sec]

L]
e L2
I HBM ® Kernel

100 10 e
Arithmetic Intensity [FLOPs/Byte] ~

A
et

— y U.S. DEPARTMENT OF Oﬁ'lce Of

ENERGY Science 50

Recap: Methodology to Construct Roofline m

1. Collect Roofline ceilings
- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance
- nvprof: --metrics, --events, --print-gpu-trace

- FLOPs, bytes (DRAM, L2, ...), runtime

3. Plot Roofline with Python Matplotlib
- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

Office of
Science 51

Recap: Methodology to Construct Roofline m

1. Collect Roofline ceilings
- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance
- nvprof: --metrics, --events, --print-gpu-trace

- FLOPs, bytes (DRAM, L2, ...), runtime

3. Plot Roofline with Python Matplotlib
- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

Office of
Science 52

Recap: Methodology to Construct Roofline m

1. Collect Roofline ceilings
- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance
- nvprof: --metrics, --events, --print-gpu-trace

- FLOPs, bytes (DRAM, L2, ...), runtime

3. Plot Roofline with Python Matplotlib
- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

Office of
Science 53

Recap: Methodology to Construct Roofline m

1. Collect Roofline ceilings
- ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

- compute (FMA/no FMA) and bandwidth (DRAM, L2, ...)

2. Collect application performance
- nvprof: --metrics, --events, --print-gpu-trace

- FLOPs, bytes (DRAM, L2, ...), runtime

3. Plot Roofline with Python Matplotlib
- arithmetic intensity, GFLOP/s performance, ceilings
- example scripts: https://github.com/cyanguwa/nersc-roofline

Office of
Science 54

Roofline Analysis with Use Cases

~

. DEPARTMENT OF Office of rr/r—r>| ,ﬁI
NERGY Science BERKELEY LAB

Code Example 1: GPP \

= GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
= https://github.com/cyanguwa/BerkeleyGW-GPP
* Medium problem size: 512 2 32768 20

= Tensor-contraction, abundant parallelism, large reductions
= Low FMA counts, divides, complex double data type, HBM data 1.5GB

Pseudo Code

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y
do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled
compute; reductions

Office of
Science 56

https://github.com/cyanguwa/BerkeleyGW-GPP

Code Example 1: GPP ‘

= Three experiments:

Vary nw from 1 to 6 | To study impact of varying Arithmetic Intensity on performance

Compile w/wo FMA | To study impact of instruction mix on performance on performance

Stride ig loop To study impact of suboptimal memory coalescing on performance

= Note that nvprof has already taken care of

- Appropriate counting of FLOPs for complex instructions
div, exp, log and sin/cos should be counted as multiple FLOPs rather than 1

- Appropriate counting of FLOPs for predicated-out threads
FLOPs are only counted on non-predicated threads

Office of
Science S7

Code Example 1: GPP :

= Highly parameterizable
1. Varying nw from 1 to 6 to increase arithmetic intensity

- FLOPs increases, but data movement stays (at least for HBM)

Pseudo Code
do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadsIdx.x
< do iw =1, nw “#unrolled
compute; reductions

2. Compiling with and without FMA
 -fmad=true/false

Office of

/Jf\ U.S. DEPARTMENT OF
& ENERGY scionce 58

Code Example 1: GPP :

= Highly parameterizable
3. Striding ig loop to analyze impact of suboptimal memory coalescing
- Split ig loop to two loops and place the ‘blocking’ loop outside

Pseudo Code
do band = 1, nbands #blockIdx.x

Stride 2

do igp = 1, ngpown #blockIdx.y

<:::’56 1gs = 0, stride -1
do ig = 1, ncouls/stride #¢t Idx.x

do 1w = I, nw #unrolled

compute; reductions "7 AR

Office of

/Jf\ U.S. DEPARTMENT OF
& ENERGY scionce 59

Code Example 1: GPP :

= Experiments 1: study the impact of varying Al on performance

= HBM Roofline, i.e. bytes are HBM bytes
- Al increases as nw grows

- GPP moves from a bandwidth bound 1

| V100

. . ' FMA: 7068.9 GFLOP/s

region to a compute bound region
5 o>

‘(5 No-FMA: 3535.8 GFLOP/s
. . Q
= Roofline captures the change in Al =
=

2 ® nw=l1 nw=4

& B nw=2 & nw=5

¥ nw=3 » nw=6

103 —— : : _—

101 102

Arithmetic Intensity [FLOPs/Byte]

PR, U-S. DEPARTMENT OF Office of

ENERGY science »

Code Example 1: GPP ‘

= Experiments 1 & 2: study the impact of instruction mix on performance

= HBM Roofline, i.e. bytes are HBM bytes
- No-FMA performance converges

to the no-FMA ceiling, but FMA By
. . ' FMA: 7068.9 GFLOP/s
performance is still far from the o
FMA ceiling S o>
- Not reaching FMA ceiling due to lack & ——No- WA 35358 GILDRs
)
. .)
of FMA instructions E
: : : : é ® nw=l1 nw=>4
» Roofline captures effects of instruction mix < . FMA B w=2 @ nw=5

1 No-FMA Y nw=3 » nw=6
103 —

et e
Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

ENERGY Science 61

FOMENT O

CET
57 \E
A feeA |
7\ L ‘
2\ \A) /s
D5
SH

Code Example 1: GPP \

= Experiments 1 & 2: study the impact of instruction mix on performance

FMA FP64 instr. . .
= At nw=6, GPP has « = _ et _ = 60% of FMA instructions
FMA FP64 instr. + non—FMA FP64 instr.
= Expected performance is 10
| V100, FMA
axX2+(1—a | ’ : .
_ () _ 80% of compute peak. o Y FMA: 7068.9 GFLOP/s
2 D 60% FMA: 5655.1 GFLOP/s
But at nw=6, GPP is only achieving 66%. o *>
5 No-FMA: 3535.8 GFLOP/s
)
= Other FP/non-FP instructions may be taking <
: . : : : : c
up the instruction issue/execution pipeline 8 o il _—
& H nw=2 & nw=>5
» Partial Roofline can show you the headroom . v nw=3 b nw=6
10 .

B 1

U.S. DEPARTMENT OF Office of

~ A
ENERGY Science 62 /\“ |

FOMENT O

CET
/57 &
af - \2
3\ 1Lt .‘
2\ \a/ /)
D5
SH

Code Example 1: GPP \

= Experiments 1 & 2: What else is going on?

= Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
- GPP is HBM bound at low nw’s and compute bound at high nw’s

- FLOPs « nw oo VI00.GPP

FMA: 7068.9 GFLOP/s

- HBM bytes: constant

- L2 bytes: increasing at a > 1

No-FMA: 3535.8 GFLOP/s

- L1 bytes: constant
- Spike in L2 curve at nw=2, 3

Performance [GFLOP/sec]

L1 ® nw=
L2 m nw=2 & nw=5
B HBM Y nw=

= Hierarchical Roofline captures more details '*"
about cache locality |

100 T 10
Arithmetic Intensity [FLOPs/Byte]
U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science 63

FOMENT O

CET
/57 &
af - \2
3\ 1Lt .‘
2\ \a/ /)
D5
SH

Code Example 1: GPP \

= Experiment 3: study the effects of suboptimal memory coalescing

- nw=06

= Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes

- L1/L2 bytes doubles from stride 1 to 2, 4] vo. PP, =
|) _]
but stays almost constant afterwards _ | &/ / FHA-TO00.2 G0N
i | Y V4
- at nw=6, GPP moves from compute £ /\~, s 35355 GELOBL
bound to bandwidth bound i
- Eventually all dots converge to HBM &
T
_ _ LS - L : :t:g:;
= Roofline captures effects of memory coalescing mm 2 v Stride4
B HBM A Stride 8
T e

Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

~ A
ENERGY Science 64 /\“ |

FOMENT O

CET
/57 &
af - \2
3\ 1Lt .‘
2\ \a/ /)
D5
SH

Code Example 2: HPGMG m

= HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement codes
= https://bitbucket.org/nsakharnykh/hpgmg-cuda

= Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

V-CYCLE F-CYCLE

SMOOTHER THRESHOLD
& RESIDUAL \% SMOOTHER lllllllllllllllllllllllllllllllll L L L
CPU 1

AWANEAN

DIRECT SOLVE

F27‘ EEEEEEEEEEEEEE o HPGMG. https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/
& 4 Science

https://bitbucket.org/nsakharnykh/hpgmg-cuda

Code Example 2: HPGMG

= Hybrid GPU and CPU code
- Example: hpgmg-£fv 7 8

- 1283 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU

= Three versions of GSRB kernel
- GSRB_FP, GSRB BRANCH, GSRB_STRIDE?2

F-CYCLE

THRESHOLD

iii

£E R U.S. DEPARTMENT OF Office of

‘ ENERGY Science %

Code Example 2: HPGMG

GSRB_FP

for (int k=klo; k<(klo+kdim); k++) {

const int ijk = i + j*jStride + k*kStride;

const double * restrict RedBlack =
level .RedBlack FP + ghosts* (l+jStride)
+((k*color000) &1) *kStride;

const double Ax = apply op ijk();

const double lambda = Dinv_ijk();

const int ij = i + j*jStride;

xo[ijk] = X(ijk) RedBlack[ij] *1lambda* (rhs[1jk]-Ax) ;
} 1

BN -
10101010 8 threads

POMENT Op

ZERD, U.S- DEPARTMENT OF Office of /‘\I A
2 4 ENERGY science 67

Code Example 2: HPGMG ‘

GSRB_FP

= Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes

= Highly bandwidth bound, inherent to stencil codes

= From Level 5 to Level 8: 1g» V100 HPGMG, GSRB_E
- Al slightly increases due to |
better Surface: Volume ratio &
@)
- More HBM bound as more &
data is read in 5
- ® Llevel5
i B Level 6
= Roofline captures computational =2 Vv Llevel?
. g . B HBM A Level 8
characteristics of the algorithm s

Arithmetic Intensity [FLOPs/Byte]
U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science 68

>
A
rrrrrrr |"'|

FOMENT O

CET
57 \E
& e ¢
7\ L ‘
2\ \A) /s
D5
SH

Code Example 2: HPGMG

GSRB FP GSRB_BRANCH
for(int k=klo; k<(klo+kdim),; k++) { for(int k=klo; k<klo+kdim; k++
const int ijk = i + j*jStride + k*kStride; const int ijk =1 + j*jsf k*kStride;
const double * restrict RedBlack = if(((14jJ*k*color00071) &l
level .RedBlack FP + ghosts* (l1+jStride) const double Ax = apply op ijk();
+((k*color000) &1) *kStride; const double lambda = Dinv_ijk();
const double Ax = apply op ijk(); xo[ijk] = X(1jk) + lambda* (rhs[ijk]-Ax);
const double lambda = Dinv_ijk(); }else({
const int ij = i + j*jStride; xo[ijk] = X(ijk);
xo[ijk] = X(ijk) RedBlack[ij] *1lambda* (rhs[ijk]-AXx) ; }
} 1 }

BN .- DN -
- 1 01 01 0 1 O 8 threads 1.1 .1 .1 8 threads

= GSRB_BRANCH has half the FLOPs as GSRB_FP but the same HBM/L1/L2 bytes

ZEWY, U-S. DEPARTMENT OF Office of

7 A = A
‘ ENERGY science 69 r:'>| I

Code Example 2: HPGMG ‘

GSRB_FP vs. GSRB_BRANCH

» FLOPs halves, bytes doesn’t change, thus Al halves and GFLOP/s halves

* Runtime is comparable even though GFLOP/s has halved

= Same number of threads occupied, only with half predicated in GSRB_BRANCH

V100, HPGMG, GSRB_F V100, HPGMG, GSRB_

1031 1031

102] 102 __

Performance [GFLOP/sec]
Performance [GFLOP/sec]

® level5 ® level5
Ll B level6 Ll B level6
-l L2 Y Level?7 -l L2 Y Level?7
B HBM A Level 8 B HBM A Level 8
0! : — : — : — 101 : — : — : —
102 101 10° 107 102 101 10° 107
Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte]

U.S. DEPARTMENT OF Office of

ENERGY Science 70

>
A
rrrrrrr |"'|

FOMENT O

CET
/57 &
af - \2
3\ 1Lt .‘
2\ \a/ /)
D5
SH

Code Example 2: HPGMG ‘
GSRB_STRIDE2 N

4 threads

for (int k=klo; k<klo+kdim; k++) {
i =1ilo +!((ilo”*j*k*color000)&l) + threadIdx.x*2;

if (i < ilo+idim) {
const int ijk = i +%ride + k*kStride;

xo[ijk] = X(iijk);

}
i=1ilo + ((ilo*j”*k”color000)&l) + threadIdx.x*2;

if(i < ilo+idim) {
const int ijk = i + j*jStride + k*kStride;
const double Ax = apply op ijk():;
const double lambda = Dinv_ijk();

xo[ijk] = X(ijk) + lambda* (rhs[ijk]-Ax);

= GSRB_STRIDEZ2 should have the same FLOPs as GSRB_BRANCH, but same bytes?
More writes than GSRB_BRANCH?

>
A
rrrrrrr |"'|

Z2. U.S. DEPARTMENT OF Ofﬂce Of
71

ENERGY science

Code Example 2: HPGMG :

GSRB_BRANCH vs. GSRB_STRIDE2
= Extra writes in GSRB_STRIDE2 cause more capacity mjsses

on L2 and DRAM, starting from Level 7 (data si
= Runtime almost doubled and GFLOP/s halved

| 2, leading to Al drop
7€)

V100, HPGMG, GSRB_

103+

102 -

Performance [GFLOP/sec]

Performance [GFLOP/se

® level5 ® level5
Ll B level6 Ll B level6
-l L2 Y Level?7 -l L2 Y Level?7
B HBM A Level 8 B HBM A Level 8
ol : ——— : ——— : —_— 101 : ——— : ——— : —_—
102 101 10° 107 102 101 10° 107
Arithmetic Intensity [FLOPs/Byte] Arithmetic Intensity [FLOPs/Byte]

ZEWY, U-S. DEPARTMENT OF Office of

ENERGY science r

>
A
rrrrrrr |"'|

Conclusions

» Roofline can gracefully capture various aspects of application performance and
architecture characteristics such as arithmetic intensity, instruction mix, memory

coalescing and thread predication.

* The proposed methodology is effective in collecting machine ¢¥ aracteristics and

application data on NVIDIA GPUs to construct hierarc toofline.
» The Roofline model provides insights that prafi- (0\\0 \30’\0‘\
- identify the most immediate bottleneck \39\9 P >
- prioritize optimization efforts y. \\\\ Q\\(Q
o\o o
- tell you when you can stop 060
G

Office of
Science 73

Reference .

= S. Williams, A. Waterman and D. Patterson, “Roofline: An insightful visual
performance model for multicore architectures,” Communications of the ACM, vol.
52, no. 4, pp. 65-76, 2009

= Empirical Roofline Toolkit (ERT): https://bitbucket.org/berkeleylab/cs-roofline-toolkit

= Example scripts for plotting Roofline: https://github.com/cyanguwa/nersc-roofline

= @General Plasmon Pole kernel: https://github.com/cyanguwa/BerkeleyGW-GPP

= HPGMG-CUDA kernel: https://bitbucket.org/nsakharnykh/hpgmg-cuda

Office of
Science 74

https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://github.com/cyanguwa/nersc-roofline
https://github.com/cyanguwa/BerkeleyGW-GPP
https://bitbucket.org/nsakharnykh/hpgmg-cuda

Acknowledgement :

= This material is based upon work supported by the Advanced Scientific Computing
Research Program in the U.S. Department of Energy, Office of Science, under
Award Number DE-AC02-05CH11231.

* This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02- 05CH11231.

Office of
Science 75

e, U.S. DEPARTMENT OF Office of .

P ENERGY science

Thank You!

N
,. A
rreeeee ﬂ

EER!(ELEY LAB

e Berkeley National Laboratory

